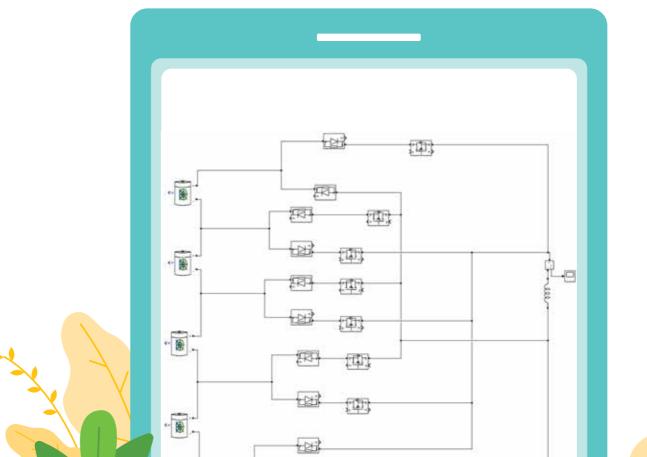
GENERAL-PURPOSE CELL BALANCING FOR BATTERY MANAGEMENT SYSTEM (BMS)

PRO A BMS system

PROJECT OBJECTIVE


A BMS is a critical component of a modern electronic battery system as it extends the battery cells' usable lifespan, thereby reducing environmental waste generated at the battery's end of life. However, the majority of off-the-shelf BMS products use passive cell-balancing, which wastes energy by dissipating the energy in resistors. This project aims to design and build a more energy-efficient BMS that utilises active cell- balancing applicable to all types of batteries, including Li-ion, lead acid, etc.

PROJECT BY:

Phua Xiao Feng Bachelor of Engineering with Honours in Electrical Power Engineering | Year 3

PROJECT SUMMARY

A simulation model with PLECS has been developed to verify the circuit and the control algorithm, which is used to determine the rating of critical components. Circuit hardware covers sensing (V/I sensors), switching (MOSFETs) and storage (Inductor), with protection devices being developed. An RT Box with hardware-in-the-loop (HIL) testing capability is used as the central controller to acquire the real-time operating status of all battery cells and send switching signals to MOSFETs to determine the charge/discharge of the selected cell to realise the State of Charge (SoC) balance among them. Various testing scenarios have been designed to verify the performance of the BMS.

SIMULATION MODEL IN PLECS

PROJECT OUTCOMES

- Simulation model with verification of both circuit and control algorithm.
- Developed BMS hardware platform with conversion efficiency of 97.5% for active balancing.
- Comprehensive testing for performance verification.

